Пятница, 28.11.2025, 09:04
Главная Регистрация Вход
Приветствую Вас, прохожий · RSS
Меню сайта
Статистика
 ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ НА КОМБИНАТОРИКУ

1. В классе 15 мальчиков и 10 девочек. Сколькими способами можно выбрать двух дежурных (одну девочку и одного мальчика)?

Решение: Пятнадцатью способами можно выбрать на дежурство одного мальчика. Десять вариантов выбора девочки существует для каждого мальчика. Значит, существует 15 ∙ 10 = 150 способов выбора двух дежурных.

2. Государственные флаги многих стран состоят из горизонтальных или вертикальных полос разных цветов. Сколько существует различных флагов, состоящих из двух горизонтальных полос одинаковой ширины и разного цвета – белого, красного и синего?

Решение: Пусть верхняя полоса флага – белая (Б). Тогда нижняя полоса может быть красной (К) или синей (С). Получили две комбинации – два варианта флага. Если верхняя полоса флага – красная, то нижняя может быть белой или синей. Получим ещё два варианта флага. Пусть, наконец, верхняя полоса – синяя, тогда нижняя может быть белой или красной. Это ещё два варианта флага. Всего получили 3 • 2 = 6 комбинаций – шесть вариантов флагов.
 12-4

3. Сколько трехзначных чисел можно составить из цифр 1, 3, 5, 7? Используя в записи числа каждую из них не более одного раза?

Решение: Чтобы ответить на этот вопрос, выпишем все такие числа. Пусть на первом месте стоит цифра 1. На втором месте может быть записана любая из цифр 3, 5, 7. Запишем, например, на втором месте цифру 3. Тогда в качестве третьей цифры можно взять 5 или 7. Получим два числа 135 и 137. Если на втором месте записать цифру 5, то в качестве третьей цифры можно взять цифру 3или 7. В этом случае получим числа 153 и 157. Если же, наконец, на втором месте записать цифру 7, то получим числа 173 и 175. Итак, мы составили все числа, которые начинаются с цифры 1. Таких чисел шесть: 135, 137, 153, 157, 173, 175. Аналогичным способом можно составить числа, которые начинаются с цифры 2,с цифры 5, с цифры 7. Полученные результаты запишем в четыре строки, в каждой из которых шесть чисел:
135, 137, 153, 157, 173, 175, 315, 317, 351, 357, 371, 375, 513, 517, 531, 537, 571, 573, 713, 715, 731, 735, 751, 753.
Таким образом, из цифр 1, 3, 5, 7 (без повторения цифр) можно составить 24 трехзначных числа.

12-5
Проведенный перебор вариантов проиллюстрирован на так называемом древе возможных вариантов. Ответ на вопрос, поставленный в задаче, можно получить, не выписывая сами числа. Рассуждая так. Первую цифру можно выбрать 4 способами. Так как после выбора первой цифры останутся 3, то вторую цифру можно выбрать уже 3 способами. Наконец, третью цифру можно выбрать (из оставшихся двух) 2 способами. Следовательно, общее число искомых трехзначных чисел равно произведению 4 • 3 • 2, = 24.
Ответ на поставленный в задаче вопрос мы нашли, используя комбинаторное правило умножения. Пусть имеется n элементов и требуется выбрать один за другим некоторые k элементов. Если первый элемент можно выбрать n1 способами, после чего второй элемент можно выбрать из оставшихся элементов n2 способами, затем третий элемент n3 способами и т. д., то число способов, которыми могут быть выбраны все k элементов, равно произведению n1 • n2 • n3 • …• nk.

4. Из города А в город В ведут две дороги, из города В в город С – три дороги, из города С до пристани – две дороги. Туристы хотят проехать из города А через города В и С к пристани. Сколькими способами они могут выбрать маршрут?

12-6
Решение: Путь из А в В туристы могут выбрать двумя способами. Далее в каждом случае они могут проехать из В в С тремя способами. Значит, имеются 2 • 3 вариантов маршрута из А в С. Так как из города С на пристань можно попасть двумя способами, то всего существует 2 • 3 • 2, т.е. 12 способов выбора туристами маршрута из города А к пристани.

5. Сколько существует флагов составленных из трёх горизонтальных полос одинаковой ширины и различных цветов – белого, зелёного, красного и синего? Есть ли среди них флаг Российской Федерации?

12-7
Решение: Таким образом, 4 • 3 • 2 = 24 флага. Ответ: 24 флага, да.

6. Сколько различных трехзначных чисел (без повторения цифр) можно составить из нечётных цифр, которые являются кратными 5?
Решение: Нечётные цифры: 1, 3, 5, 7, 9. В данном случае, чтобы число было кратным 5, оно должно оканчиваться на 5. Составим древо возможных вариантов.

12-8
Таким образом, 4 • 3 • 1 = 12 чисел.

7. В школьной столовой предлагают 2 первых блюда: борщ, лапша – и 4 вторых блюда: пельмени, котлеты, гуляш, рыба. Сколько обедов из двух блюд может заказать посетитель. Перечислите их.
Решение: Первое блюдо можно заказать 2 способами: борщ или лапша, а для заказа второго блюда есть 4 возможности: пельмени, котлеты, гуляш, рыба Таким образом, 2 • 4 = 8 различных обедов:
Борщ, пельмени;
Лапша, пельмени;
Борщ, котлеты;
Лапша, котлеты;
Борщ, гуляш;
Лапша, гуляш;
Борщ, рыба;
Лапша, рыба.

8. Учащиеся 6 класса решили обменяться фотографиями. Сколько фотографий для этого потребуется, если в классе 11 учащихся.
Решение: 11 человек по 10 фотографий. 11 • 10 = 110 (фотографий). Ответ: 110 фотографий.

9. Из села Ташла в село Переволоки ведут три дороги, а из села Переволоки в город Тольятти – четыре дороги. Сколькими способами можно попасть из села Ташла в город Тольятти через село Переволоки?
Решение: 3 дороги по 4 варианта, т.е. 3 • 4 = 12 (способов). Ответ: 12 способов.

10. В кафе имеются четыре первых блюда, пять вторых и два третьих. Сколькими способами посетители кафе могут выбрать обед, состоящий из первого, второго и третьего блюд?
Решение: 4 • 5 • 2 = 40 (способов) Ответ: 40 способов.

Copyright "Знаем на 5!" © 2025
"Математик (alpha)"
Календарь
«  Ноябрь 2025  »
ПнВтСрЧтПтСбВс
     12
3456789
10111213141516
17181920212223
24252627282930
Наш опрос
Угол Эйлера это?
Всего ответов: 613
Погода
Архив записей